My Cart

Sign In

Register Kit

DNAFit Blog

Gene in Focus - Part 9: VDR

Posted 665 Days Ago in: Training, Genetics


The next gene in our series is VDR; the vitamin D receptor gene. This gene plays a role in how well our bodies can utilise vitamin D, which in turn can affect various different processes. Currently, VDR appears in three different sections of our report – power/endurance, vitamin D needs, and caffeine sensitivity.

When we report on vitamin D requirements, we are doing so from the perspective of bone health. Changes in the VDR gene, known as polymorphisms, have been shown to have an impact on how strong and healthy our bones are. For example, a 2005 study found that the VDR CC genotype was associated with an increased risk oh a hip fracture in a group of elderly post-menopausal women. If we know that someone is at an increased risk of developing a fracture of any type, then we can be proactive in preventing that. From a nutritional standpoint, both vitamin D and calcium work together to improve bone strength – as such, if we find that you have at least one C allele of VDR, we would recommend slightly higher intakes of these nutrients above the recommended daily allowance.


VDR genotype can also play a role in caffeine sensitivity. We have previously discussed CYP1A2 in this series, a gene that plays a very large role in determining how well you can tolerate caffeine, but we also need to pay attention to which version of the VDR gene we have. That’s because there is evidence that those with the CC genotype are more likely to see a loss of bone mineral density with high caffeine intakes. A loss of bone mineral density has also been linked to an increased risk of fractures, which we want to avoid. Due to this, if you have the VDR CC genotype, we would recommend that you limit your caffeine intake to less than 200mg per day, about as much found in 2-3 cups of coffee, depending on how strong you like your coffee.


Finally, VDR genotype can have an effect on whether you respond well to power-based training or not. Polymorphisms in this gene have been linked to differences in muscle strength and muscle. In this case, CC genotypes may achieve more favourable muscle growth and bone density improvements with strength training, as opposed to endurance training.


From a health perspective then, we can see that carrying a C allele means we need to be a little bit more prudent in ensuring we get enough vitamin D whilst reducing our caffeine intake. Vitamin D can be found primarily in oily fish, but also in eggs and some fortified dairy products. The sun is also a really great source of vitamin D. From a training perspective, C allele carriers are perhaps a bit more likely to have a better response to strength training.


Gene in Focus VDR Training Workout Vitamin D Nutrition Diet


Other Articles

Posted 671 Days Ago in: Genetics

Gene in Focus - Part 8: TCF7L2

The gene that we are going to be taking a closer look at this week is TCF7L2. This gene creates a protein called transcription factor 7-like 2, which in turn binds to other genes to alter their expression. It has been shown through research to have an impact on how well you tolerate carbohydrates, and how well you tolerate saturated fat, which is how we report on it in the DNAFit reports.

Read More

Posted 677 Days Ago in: Training

10 foods that can help you get a better workout

You’re working out, eating well and are on the way to getting the results that you want but what if you knew what foods could take your results to the next level. It’s no use working out and not complementing that with a diet of the best foods for you so we’ve compiled a list of nature’s ‘superfoods’ that will not only assist you in having a better workout but also improve your pre and post-workout. We’re beginning to shift our focus past diet regimens and onwards to setting a benchmark for the healthiest diet out there. Some of these foods may be a little outlandish to you but we guarantee that they’re packed with vitamins and minerals and are essential for everyone’s health and vitality.

Read More

Get your guide!

Receive our FREE 14-day guide, direct to your inbox, on how genetics impact every aspect of fitness and nutrition.

Get your guide!

Receive our FREE 14-day guide, direct to your inbox, on how genetics impact every aspect of fitness and nutrition.